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Thermodynamic and orientational properties of two-dimensional
multicomponent hard rectangle � uids
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A molecular statistical model is developed for a two-dimensional multicomponent � uid
composed of hard rectangles. The con� gurational partition function of such a system on a
square lattice is evaluated by applying the orientation dependent version of the Flory–
Huggins probability method. Unlike earlier treatments of similar problems, the � nal result
for the con� gurational entropy is independent of the order of placement of the rectangular
plate-like particles. The present approach has been extended to enable an analysis of both
facewise and edgewise modes of adsorption of rectangular molecules on a planar surface.
Further, the limit of in� nitesimal lattice size has been considered as the generalized continuous
version of the corresponding lattice model. The results obtained within the present continuous
approach are compared with those of studies of related one-component hard body � uids.

1. Introduction molecular con� gurations. The possible existence of a
Two-dimensional (2D) systems composed of hard variety of diŒerent orientations of the particles makes

anisometric particles are a topic of interest in various con- the problem signi� cantly more complicated [4–7, 15–19].
texts of condensed matter thermodynamics . Such models, However, the theoretical description of such monolayers
like their 3D counterparts, should be the reference may be simpli� ed by restricting all the possible modes
systems used to describe � uids interacting by means of adsorption to single representative con� gurational
of more realistic potentials [1–3]. Also, studying such states. On this view, the problem results in the statistical
� uids may be useful in trying to identify the entropy thermodynamic description of a 2D multicomponent
sources contributing to the adsorption properties of rigid ensemble of anisometric objects even in the case of
molecules on planar surfaces [4–7], as well as to the adsorption of a one-component system.
phase behaviour of thin � lms of liquid crystalline sub- At present, various methods have been proposed
stances (e.g. cyano derivatives at a water–air interface for handling adsorbed anisometric particles. The lattice
[8] and on pyrolytic graphite surfaces [9], and lyotropic cluster approach devised by Tovbin [6, 7] is based
tubules suspended on the surface of aqueous solutions on the replacement of the calculation of the partition
[10]). function by solving a set of equations relative to cluster

Another reason for this interest is to know the extent distribution functions, which characterize the probabilities
to which dimensionality of the system aŒects the nature of diŒerent local con� gurations of the particles. In an
of liquid crystalline phase transitions. Recent evidence, alternative method, the orientation dependent general-
both from analytical models [11–14] and from Monte ization of the Flory–Huggins statistics [20] is utilized.
Carlo simulations [3], has indicated that order–disorder The earlier studies of adsorbed monolayers composed
transitions in 2D hard body � uids may be either � rst of semi-� exible [15] and rod-like [16–18] molecules
order or continuous, the character of these transitions have been carried out by application of the simplest
being dependent on the shape and aspect ratio of the version of Di Marzio’s lattice model [21]. In the 2D
particles. version of the model [21], each particle is approximated

Modelling of phase transitions and the structure of as a rod, which occupies a line of contiguous sites along
monolayers formed by rigid particles requires a treat- a single row of a square lattice. The more complicated
ment of the distribution in surface area of the diŒerent case concerning the adsorption of plate-like molecules

has been studied to a lesser extent. Boehm and Martire
developed a mean � eld analysis of rigid square and*Author for correspondence.
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814 E. P. Sokolova and N. P. Tumanyan

rectangular plate-like particles on a homogeneous planar consisting entirely of rectangles of sort k aligned along
a particular direction a (=1, 2). Let the index l = aksurface [19]. In their study, the con� gurational part of
label a particle of species k with the orientation a;the partition function has been estimated along the same
thus, l is assigned values 1, 2 for the particles of sort 1,lines as Di Marzio’s statistics which has been extended
values 3, 4 for the particles of sort 2, etc. A particle ofby Shih and Alben [22] to the system of plates placed
the kth sort is subdivided into L l ; L

k
= A

1k
¯ A

2k
seg-onto a cubic lattice in restricted, mutually orthogonal

ments, each segment occupying a single lattice site.orientations . However, the con� gurational entropy deter-
N

0
(=M Õ Sl L lNl ) cells are vacant.mined in [19] in this manner is dependent upon the

Taking into consideration the dependence on the sizesequence of placement of plates and rods onto the lattice.
of a lattice cell [25, 26, 32], the con� gurational contri-The problem of packing of squares and rods has been
bution to the Helmholtz free energy of a system of non-re-examined by Di Marzio et al. [23]. The failure of the
attracting anisometric particles placed on a square latticeattempt to solve ‘the order of placement problem’ led
can be expressed as (see the appendix 1A)the authors to conclude that for objects other than linear

chains a combinatorial lattice method itself breaks down.
Flatt

= Õ kT ln[g({Nl}; M ) ¯ (Du)N/nN] (1)It would be desirable, therefore, to have a model of
the 2D hard particle mixture in which thermodynamic

where the combinatorial factor g ({Nl }; M ) is the totalconsistency is obtained by using a rather simple lattice
number of ways to arrange {Nl} indistinguishableapproximation. In the present paper we develop a
particles on M lattice sites and n is the number ofmolecular statistical model of a multicomponent � uid
discrete orientations of a particle (n = 2, if A

1k
Þ A

2k
).composed of hard rectangles that is continuous in trans-

As noted in the introduction, the model calculationslations and discrete in orientational distribution. Our
applied in the earlier studies [19, 23] to a particularstudy comprises two parts. In § 2, the con� gurational
case of mixtures of squares and rigid rods on a 2Dpartition function of such a system on a square lattice
lattice gave results which were dependent on theis evaluated by applying the modi� ed Flory–Huggins
sequence of placement of the particles on the array ofcon� guration counting technique. In § 4, the limit of
lattice cells. Thereby the validity of the Flory–Hugginsin� nitesimal lattice size is considered as the generalized
counting method has itself been placed into question forcontinuum version of the corresponding lattice model.
objects other than linear chains. The purpose of thisAlso a comparison with some recent 2D models of single
section is to examine the packing problem anew for thecomponent hard body � uids [3, 12, 13, 24] is performed.
case of hard rectangle � uids, retaining the essentialIn § 3, the lattice version of the model is applied to the
features of combinatorial lattice statistics as adapteddescription of adsorption of rectangular particles on a
for 2D and 3D phases with orientational ordering ofplanar surface.
plate-like and block-like particles [19, 21–23, 25, 26].The procedure used in the present study is based on

In estimating g ({Nl}; M ), we consider the processthe method elaborated earlier for a 3D multicomponent
where the particles are being placed onto the lattice� uid of hard rectangular parallelepipeds [25]. As shown
successively one after another. One has � rst to evaluatein [26], it provides a reasonable description of the
the average number of con� gurations, nl , available totendencies in nematic–isotropic transition parameters in
the (Xl +1)th particle of type l, given that {Xl} particles� uids composed of rod- and plate-like particles, which
have already been placed. This can be estimated asagree with those obtained from other analytical methods
follows:and computer simulations [27, 28]. The model derived in

[25] proved to be successful in studying the orientational
nl ({Xl}; Xl +1) = X0P± l ({Xl }; L l Õ 1) (2)

and thermodynamic properties of nematic solutions
[29–31] and the stability of biaxial nematic phases [26].

where X0 (=M Õ Sl L lXl ) represents the number of
empty lattice cells which can accommodate one corner
segment of a rectangle, and P± l is de� ned as the con-2. Con� gurational statistics for a multicomponent
ditional probability that L l Õ 1 neighbouring cells willmixture of plate-like rectangular particles placed on a
be vacant to accommodate the remaining segments ofsquare lattice
the particle.In this section, we consider a two-dimensional square

In order to approximate g ({Nl}; M ), we shall seeklattice with M equivalent cells, each having an area Du
the numbers {nl} which satisfy relationsequal to w2. Distributed on the lattice are {Nl}

(Sl Nl = N ) rectangular plate-like particles, their axes
(q ln nl /qXd )

T,M.{Xl d}
= {q ln nd/qXl}

T,M.{Xd l }
.

being directed along axes x1 , x2 of the quasi-lattice
frame. Each component of the mixture is regarded as (3)
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8152D hard rectangle � uids

Then the combinatorial factor can be calculated as particle as follows:
follows:

P± l ({Xl}; L l
Õ 1) = a2

i=1

P(r
( i )
l Õ 1)

i
¯ P(r

(1 )
l Õ 1)(r

(2 )
l Õ 1)

12
. (7)

ln gd ({Nl }; M )

Here, the � rst term of the product represents the
= P N1

0
ln n

1
(X

1
) dX

1 +P N2

0
ln n

2
(N

1
; X

2
) dX

2 + ¼ probability that r(i)l Õ 1 contiguous cells along directions
e
i

(i = 1, 2) from the corner segment of a rectangle are
empty, the second term represents the probability that

+P Nl

0
ln nl ({Nb}b<l ; Xl ) dXl ; g({Nl }; M ) the (r(1)l

Õ 1 ) (r(2)l
Õ 1 ) contiguous cells needed to build up

the rest of the rectangle are empty; r(i)l denotes the
= gd ({Nl}; M )/ a

l

Nl ! . (4 ) number of lattice cells within an edge constrained along
the direction i for a particle of type l, L l = r(1)l ¯ r(2)l . The
sense of the approach utilized in the cited works is thatThe factorial terms account for indistinguishability of
the probability P

n
(n = 1, 2, 12) that a cell in directionthe particles of type l.

n (n = e
i
, e

1 +e
2
) will be empty, given that a neighbourSuch a construction of g ({Nl}; M) can be expected to

cell in direction Õ n is empty, is de� ned as the fractionyield the � nal result, which is independent of the assumed
of vacant cells in a random distribution of vacant andorder of molecule placement onto the surface. To show
occupied cells:this, we shall represent the term nl , which is introduced

in expression (2), as nl = gd (X1 , … , Xl +1, … ; M )/ P
n

= X
0
/(X

0 +Bn) (8)
g
d
(X

1
, … , Xl , … ; M ); it may be interpreted as the

where Bn is the number of segments which could possiblyaverage number of placing the (Xl +1)th particle, given
occupy a cell in direction n.that {Xl} particles have already been placed. Then the

In the case of a multicomponent mixture, the numbersfollowing relations can be obtained:
Bn can be obtained by simple geometrical considerations

ln nl # q ln gd ({Xl }; M )/qXl as

= Õ q(F ¾latt/kT )/qXl = Õ m ¾l /kT (5 ) B
i
= �

l

Xl r(j)l
= �

l

Xl L l /r(i)l , i Þ j

where in accordance with expressions (1) and (4),
B12

= �
l

Xl (r(1)l +r(2)l Õ 1). (9)F ¾latt ({Xn }) is written for

The number nl available to the additional (Xl +1)th
Flatt({Xn }) +kT A�

l

Xl ln (Du/2) Õ ln a
l

Xl !B . rectangle may now be estimated from relations (7–9) by
substitution into de� nition (2 ). However, as shown in
appendix 2, the above application of the probabilityThe relationship between ln nl and the partial derivation
method to the � uid under consideration does not provideof the combinatorial factor was obtained by Shih
its internal consistency.and Alben in their treatment of steric interactions of

The main reason for this shortcoming is that theplate-like molecules on a cubic lattice [22].
assumption (8) of complete randomness adopted toTaking into consideration expression (5), one can
compute the probability P

n
as well as P± l of equation (7)write relations (3 ) in terms of the chemical potential, ml ,

neglects the particular steric properties of plate-likeof particles of type l as
particles. In fact, the availability of cells necessary to

(qml /qXd )
T,A,{Xl Þ Xd}

= (qmd/qXl )
T,A,{Xd Þ Xl }

(6 ) build up the edges and the interior of the given particle
may, due to the eŒect of blocking of cells by interior

where A = MDu is the total surface area and
segments of the same particle, not be uniform. To

ml = m ¾l Õ ln(Du/2 ) +ln Xl .
overcome this de� ciency of a random distribution, while

Equation (6) is equivalent to the familiar relation
maintaining the ideas of the Flory–Huggins procedure,

in thermodynamics for a 2D multicomponent � uid.
we have tried to take into consideration the state of

Consequently, it is a necessary and su� cient condition of
neighbouring lattice cells needed for accommodation

integrability of equation (4), which provides a criterion
of (r(1)l

Õ 1 ) (r(2)l
Õ 1 ) interior segments of the (Xl +1)th

of the consistency of g ({Nl }; M ) and the free energy F
latt

.
particle. For this purpose, we have introduced the relative

Further, we follow ideas of the counting procedure
probability, P*12 , of � nding the given cell empty given

used in [19, 22, 23]. In order to compute the probability
that two adjacent cells along e1 and e2 are simultaneously

P± l de� ned in equation (2), we seek to obtain its mean
empty, as follows:

� eld approximation by counting the product of the
probabilities for placing L l

Õ 1 segments of a plate-like P*12
= X

0
P

1
P

2
/X

0
P

12
= P

1
P

2
/P

12
. (10)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
3
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



816 E. P. Sokolova and N. P. Tumanyan

According to de� nition (8), the denominator, X0P12 , a = 2), one has:
represents here the average number of two vacant cells,
which are in contact as shown in � gure 1 (a), the cell

g
RS

(N
1
, {Na2

}; M ) =

a
a

[M Õ r(r Õ 1)N1
Õ (r Õ 1)Na2

]!

N
0
!N

1
! a

a

Na2
![M Õ (r Õ 1)2N

1
]!

.labelled in � gure 1 (b) with an asterisk being occupied or

empty. The numerator, X0P1P2 , represents the average
number of three vacant adjacent cells which are shown (13)
in � gure 1 (b), the cell (*) now being empty. Thus, the

When N1 is set to zero, expression (13) leads toratio of the products X0P1P2 and X0P12 can be inter-
preted as the relative probability P*12 introduced in

gR (N1
= 0, {Na2

}; M ) = C(M Õ rN2 )! a
a

Na2
!M!DÕ 1

equation (10).
Employing equations (8), (9) and (10), for the average

Ö a
a

[M Õ (r Õ 1)Na2
]! . (14)number of con� gurations available to the (Xl +1)th

particle, one now has:
Expression (14) corresponds to the familiar Di Marzio

n*l ({Xl }; Xl +1) result [21] related to rods spread on a 2D lattice.
In another case, for a one-component system of

squares consisting of r2 segments, expression (13) is= X0 a2
i=1

P(r
( i )
l Õ 1)

i
¯ (P*12 )(r(1 )

l Õ 1)(r
(2 )
l Õ 1)

reduced to:
=XLl

0
(X

0 +B
12

)(r(1
l Õ 1)(r

(2 )
l Õ 1) gS (N1 , N2

= 0; M )
/[ (X0 +B1 )(Ll Õ r

(2 )
l ) (X0 +B2 )(Ll Õ r

(1 )
l )]. (11)

= [M Õ (r2 Õ r)N
1
]!2

In appendix 2, we demonstrate that the relation (3) is /{N!(M Õ r2N1 )![M Õ (r Õ 1)2N1]!}. (15)
now satis� ed. Then, upon applying expression (11) to

As shown in § 4, in the limit of continuous translations,
equation (4), followed by use of Stirling’s approxi-

expression (15) enables one to obtain an equation of
mation and the replacement in relations (9) of the values

state � tting well the result derived by Ree and Hoover
Xl with Nl , one obtains the following result for the

[33].
combinatorial factor:

In appendix 3, we have performed an additional test
of the lattice statistics developed in this section for a
2D multicomponent � uid. For the particular case of
a mixture of squares and rods (squares before rods andg({Nl }; M ) =

a2
i=1

AN0 + �
l

NlL l /r(i)l B !

a
l

Nl !N0 !CN0 + �
l

Nl (r(1)l +r(2)l Õ 1)D !
rods before squares placements) , it is shown, that the
� nal result for the combinatorial factor does not depend
on the order of placement of the particles on the lattice.

Finally, one may conclude that the present approach
provides an a priori basis for studying properties of=

a2
i=1

(N
0 +B

i
)!

a
l

Nl !N0 !(N0 +B12 )!
. (12)

multicomponent hard rectangle � uids. It may be mean-
ingful for the statistical thermodynamic interpretation
of behaviour of monolayers formed by rigid particles. InFor the particular case of a mixture of square plates
particular, it may be used for calculation of the adsorbater Ö r (k = 1; r(1)a1

= r(2)a1
= r for a = 1, 2) and rods r Ö 1

population distribution in an anisotropic surface(k = 2; r(1)12
= r, r(2)12

= 1 for a = 1, and r(1)22
= 1, r(2)22

= r for
ordering.

The limit of in� nitesimal lattice cell, which is con-
sidered as an approximation of a continuum description
of mass centres of particles will be discussed in § 4. In
the next section, we provide numerical applications of
the proposed version of the 2D lattice model.

3. Application of the model to an adsorbed monolayer
of plate-like molecules

A treatment of a monolayer adsorption of rectangular
Figure 1. Schematic drawing which explains the de� nition of

molecules on a planar surface may be performed bythe relative probability, P*12 , of � nding a vacant cell given
extension of the methods developed in the studiesthat two adjacent cells along e1 and e2 are simultaneously

empty. [6, 7, 19]. Here we apply the Boehm–Martire model
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8172D hard rectangle � uids

[19], combining it with the above developed results where a chemical potential, m*l , of an object of type l in
an athermal hard rectangle mixture can be obtainedof the packing statistics. We consider a k-component

mixture of particles with dimensions A
1k

¯ A
2k

¯ A
3k

, from
which are adsorbed on a square lattice with M sites.

bm*l = b(qF
latt

/qNl )
M,T,{Nb l }In a monolayer of such particles, an in� nite number

of orientations of molecules with respect to the surface
= L l �

i

(1 Õ 1/r(i)l ) lnAh Õ 1 Õ 1 + �
l

hl /hr(i)l Bis possible. To simplify the description of the thermo-
dynamic properties of such a monolayer, all the possible

Õ L l ln(h Õ 1 Õ 1) Õ (L l
Õ r(1)l

Õ r(2)l +1)projections of each molecule are assumed to be restricted
to the states represented with the surface areas arranged

Ö lnCh Õ 1 Õ 1 + �
l

(r(1)l +r(2)l Õ 1)yl / �
l

L l ylDin L
1k

= A
1k

¯ A
2k

, or L
2k

= A
1k

¯ A
3k

, or L
3k

= A
2k

¯ A
3k

adjacent lattice cells. According to this view, for each
molecule there are three modes of adsorption, by any of

+lnAyl / �
l

L lylB +ln(Du/2). (19)three diŒerent faces of a rectangular parallelepiped, the
projections of an adsorbed molecule being represented as

Here yl = Nl / Sl Nl = y
pk

sapk
(S3

pk=1
S2a=1

y
pk

sapk
= 1 ),diŒerent species. Thus, on attempting an explanation of

where y
pk

represents the fraction of molecules of sort kthe properties of an adsorbed one-component system, one
which have surface area L

pk
; the fraction of the corres-encounters the problem of modelling of a multicompon-

ponding edgewise adsorbed particles pointing alongent mixture.
direction a is sapk

.Let Nl = Napk
denote the number of rectangular

To obtain the set {yapk
} which minimizes the functionparticles which are adsorbed along their L

pk f at given T and n one needs to solve the following 5k( p = 1, 2, 3) faces and aligned along direction a.
simultaneous equations involving any pair of values y

pkThen N
k

= S3
p=1

S2a=1
Napk

, n = S Nl /M = Sl nl , and
and a fraction sapk

. (a = 1 or 2) for each of three modesh = S
k

S
p

Sa L
pk

napk
represent, respectively, the total

of adsorption ( p = 1, 2, 3):number of adsorbed molecules of sort k, the surface
density of the adsorbate and the surface coverage
(0 < h < 1).

(q f /qsapk
)
T,n,yp k

= 0

(q f /qy
pk

)
T,n,sp ak

= 0.
(20)

Under the assumption that the molecular segment–
surface site adsorption energy, e, does not depend on a In terms of variables yapk

, the set (20) is equivalent to
mode of adsorption, the total internal energy, E, of the following 5k coupled equations, where the index a
a system with non-attracting particles is determined by can be assigned values 1 or 2:
the surface adsorption energy, Ea , as follows

E = Ea
= Õ |e| �

k
�
p
�
a

L
pk

Napk
= Õ |e|Mh. (16)

m
1pk

= m
2pk

, p = 1, 2, 3

ma1k
= ma2k

ma1k
= ma3k

.

(21)

This selection of Ea is consistent with a chemically
Once the adsorbate population distribution, {yapk

}homogeneous adsorbate and adsorption surface.
and {sapk

}, has been determined, other thermodynamicThe Helmholtz free energy per lattice cell in units
properties of an adsorbed monolayer can be obtainedb Õ 1 ; k

B
T may be written as

straightforwardly.
b f = bFlatt/M +bEa/M (17) For instance, the spreading pressure, Wlatt, of a system

with non-attracting particles can be estimated by using
where Flatt is determined with the aid of equation (1) equations (1) and (12) to give:
together with an expression (12) for the con� gurational
factor.

To specify the set {N± l }, corresponding to an bWlattDu = Õ bAqFlatt
qM B

T,N

= ln

a2
i=1

(N0 +B
i
)

N0 (N0 +B12)
.

equilibrium state of an adsorbed monolayer, it is con-
venient to introduce a chemical potential, ml , of an

(22)
object of type l. In this case, such an object corresponds

Further, we focus on some equilibrium properties ofto a face p
k

of a molecule of sort k, the face being aligned
the adsorbed non-attracting square plate molecules con-along direction a. Taking into account (1), (16) and (17)
sisting of r ¯ r ¯ 1 cell segments, the possible modes ofone gets:
adsorption being restricted to facewise and edgewise. As
noted in the introduction, the statistical thermodynamicml

= [q( f M )/qNl]
M,T,{Nb l }

= m*l Õ L l |e| (18)
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818 E. P. Sokolova and N. P. Tumanyan

analysis of a mixture of squares and rods performed in Figures 2 and 3 display, respectively, an adsorbate
population distribution (the fraction of edgewise adsorbed[19] and in the later study [23] gives diŒerent results

which depend on the sequence of placement of particles molecules, y
2
) as a function of rn and the bW

latt
Õ n

isotherms for the system of plate-like particles havingonto a square lattice. The aim of our calculations is to
provide a comparison of the results of the present dimensions 3 ¯ 1 ¯ 1 for some � xed values of be, along

with the data, replotted from [19]. (A variable rn inapproach with those obtained in [19]. The method
labelled in [19] as sequence I is based on the assumption � gure 2 is chosen for comparison with the results of the

corresponding y
2
(rn) calculations of the cited work.)that squares and rods are placed onto the lattice in

direct proportion to their � nal bulk composition. In the For the properties investigated, one can see that the
inconsistency in estimation of the con� gurational entropyother placement sequences denoted as F and E, all

facewise (edgewise) adsorbed molecules are introduced within the three various methods of [19] is of great
consequence numerically. These diŒerences are especiallyonto the surface before edgewise (facewise).

Let N1
= Ny1 and Na2

= Ny2sa2
be the numbers of notable in the case of the bWlatt

Õ n isotherms. The
results of the present calculations are close to thosefacewise and edgewise adsorbed particles, respectively;

sa2
(a = 1, 2) is the fraction of edgewise adsorbed particles obtained within the method F, but this conformity seems

to be fortuitous.aligned along axes x1 and x2 of the coordinate frame.
Thus, for the adopted way of labelling the states of However, for r = 3, the qualitative predictions of the

behaviour of these properties are the same. It has beenadsorbed particles r(1)a1
= r(2)a1

= r for a = 1, 2 (k = 1);
r(1)12

= r, r(2)12
= 1 for a = 1, r(1)22

= 1, r(2)22
= r for a = 2 (k = 2 ). revealed, that in this case only isotropic adsorption is

possible. All the results exhibit the same tendencies forIn accordance with equations (20) and (21),
equilibrium values of {yap

} and {sap
} may be located edgewise adsorption as rn increases, these tendencies

being weakened as the values of the molecular segment–from the following two equations:
surface site adsorption energy increase. Figure 3 shows,

(q f /qy1 )
T,n,s12

= m12
Õ m1

= 0 (23)
that the bWlatt curves exhibit the same monotonic
increase with n, the absence of discontinuities in the(q f /qs12)

T,n,y1
= m12

Õ m22
= 0 (24)

slopes of all the isotherms indicating an absence of phase
where the chemical potentials, m

1
and ma2

, of facewise
transitions in the monolayer.

and edgewise adsorbed molecules are obtained from
Further comparison between the results of the

equations (18) and (19) to give:
bWlatt

Õ n calculations has been made for the case
m1

= m*1
Õ r2 |e|

bm*1
= r(r Õ 1) �

2

a=1

ln[1 Õ n(r Õ 1)(ry
1 +sa2

y
2
)]

+ln (ny1 ) Õ r2 ln (1 Õ h)

Õ (r Õ 1)2 ln[1 Õ n(r Õ 1)2y1] (25)

ma2
= m*a2

Õ r2 |e|

bm*a2
= (r Õ 1) ln[1 Õ n(r Õ 1)(ry1 +sa2

y2 )] (26)

Õ r ln(1 Õ h) +ln (nsa2
y2 ).

Therefore, equation (24) is always satis� ed if sa2
= 1/2.

It corresponds to the isotropic distribution of rod-like
edges on the square lattice.

The spreading pressure for an adsorbed monolayer
of square plate-like particles can be estimated upon
applying equation (22) and relationships (9) as follows:

bW
latt

Du = �
2

a=1

ln[1 Õ n(r Õ 1)(ry
1 +sa2

y
2
)]

Õ ln[1 Õ n(r Õ 1)2y1] Õ ln (1 Õ h). (27) Figure 2. The fraction of edgewise adsorbed plates as a
function of rn. The curves 1, 2 correspond to r = 3 and

It is seen, that Wlatt depends on the surface density, n, be = Õ 2/3; Õ 2, respectively. The solid curves are replotted
(or the area per molecule), the surface coverage, h, and from � gure 2 of [19]. The dashed curves show the results

obtained within the present model.the orientational state of an adsorption layer.
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8192D hard rectangle � uids

Figure 4. The reduced spreading pressure W* as a function
of n for the adsorbed plates having dimensions 4.4.1 (1)
and 5.5.1 (2); be = Õ 2. The solid curves labelled F are
replotted from � gure 7, the solid curve labelled I is calcu-Figure 3. The reduced spreading pressure, W* = bWlatt/Du, as
lated from equation (31) of [19]; symbols—as in � gure 3.a function of n for the adsorbed plates having dimensions
The dashed curves (1 ¾ , 2 ¾ ) show the results obtained within3.3.1 and be = Õ 2/3 (1); Õ 2 (2), respectively. The solid
the present model; a transition from isotropic to aniso-curves are replotted from � gure 4 of [19]; symbols F, I,
tropic ordering of edgewise adsorbed plates is labelledE refer to three diŒerent approximations used to evaluate
with an asterisk. Location of the minimum on the isothermthe combinatorial factor (see text). The dashed curves
2 ¾ is marked with an arrow. To separate the curves, the(1 ¾ , 2 ¾ ) show the results obtained within the present model.
W* scales for the curves 2F and 2 ¾ have been shifted as
W* +0.25.

of plates of edge length 4 and 5 at the � xed value of
be = Õ 2. Figure 4 shows that the isotherms computed

actions. However, the examples presented seem to pro-
in the previous study reveal discontinuities indicating

vide an adequate sampling. Consideration of molecular
transition from isotropic to anisotropic packing of edge-

attractions in the framework of the Bragg–Williams or
wise adsorbed particles. This discontinuity is more

quasi-chemical model seems to present no additional
noticeable in the case of the I approximation than that

problems in principle.
obtained with the aid of approximation F of [19] for
the determination of the con� gurational entropy. Since

4. Continuum version of the 2D lattice modelthe states with qbWlatt/qn < 0 are unstable, the actual
Generalization of lattice results to a continuum ofmonolayer presumably consists of coexisting isotropic

translation coordinates is possible in a procedure devisedand ordered phases having diŒerent densities. In contrast
previously for a 3D system composed of hard rectangularto the results of the former study, discontinuities in the
parallelepipeds [25]. As shown in appendix 1B, theslopes of the isotherms bWlatt

Õ n caused by the con-
continuum limit of expression (1) for the Helmholtz freetinuous transition from the isotropic to the nematic state
energy of the corresponding 2D lattice model isare scarcely detectable. In the case of r = 5, the isotherm

evaluated within the present approach exhibits a shallow
minimum which may indicate a � rst order transition in bF

conf
= �

l

Nl A Õ 1 + fl b
1
b
2

h

1 Õ h
+ln

h

1 Õ h
+ln

n ¾l
h Ba monolayer; however the region with qbW

latt
/qn < 0 is

much less pronounced than in the isotherm obtained (28)
in [19].

It may be possible to perform comparisons between where h = Sl ul Nl /A = Sl hl is the fraction of surface
area covered by particles, ul is the area per particle, Athe present model and the previous treatments [17–19]

on taking into consideration attractive molecular inter- is the total surface area, n ¾l = Nl /A, b
i
= Sl hl /h f (i)l .
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820 E. P. Sokolova and N. P. Tumanyan

The surface pressure is expressed by 0.3243, respectively. Thus, the values in question are in
agreement with the quantities 0.74, 0.49 and 0.38 for
hard ellipses with the same aspect ratios, calculated inbWa2 = Õ bAqF

conf
qAÄ B

T,{Nl }

= b
1
b
2

h2
(1 Õ h)2

+
n ¾ a2

(1 Õ h) the framework of the density-functional theory [12].
In � gure 5, the order parameters for hard rectangles

(29)
with elongations 4 and 6 are shown as functions of the
surface density, along with the results for hard ellipseswhere AÄ = A/a2 is a dimensionless surface area,
with continuous orientations; these data are replottedn ¾ = Sl n ¾l .
from [13]. It can be seen that the present model providesIn order to test the validity of the present approach,
conformity in the trends in the order parameters calcu-we have performed the numerical solution of the
lated on the basis of the scaled particle theory. However,equation of state for the case of an ordering single
recent evidence obtained both from analytical theoriescomponent � uid.
[11–13] and from computer simulations [3] indicatesLet N1 and N2 be the numbers of rectangles whose
that in the case of 2D hard rod � uids, the nature of thelong edges are parallel to the axes x1 and x2 of the

coordinate frame. In accord with (28) and (29), the free
energy, FHR, and the compressibility factor, ZHR, of such
a system are given by

bFHR
N

= Õ 1 +
1
2c

h

1 Õ hCc2 +1
2

(1 Õ S2 ) +c(1 +S2 )D
+ln

h

1 Õ h
+[(1 +S ) ln (1 +S )

+(1 Õ S ) ln(1 Õ S )]/2 Õ ln 2 (30)

ZHR =
bWHRu

h
=

1
(1 Õ h)2G1 +

h

4
[(c +c Õ 1 ) (1 Õ S2 )

+2(1 +S2 ) Õ 4]H . (31)

Here, b1
= (s1 +cs2 )/cd, b2

= (cs1 +s2 )/cd, u = cd2 (c is
the length-to-breadth ratio of a rectangle), sl = Nl /N,
(l = 1, 2).

The degree of the nematic alignment is given by the
order parameter S = s

1
Õ s

2
; in our case, the states with

S > 0 and S < 0 are equivalent.
It seems expedient to compare our data on transition

characteristics with those of more sophisticated models
in which continuous variation of particles is allowed.
Expanding FHR to powers of S yields:

bFHR/N = bFHR (S = 0)/N + �
4

n=2

a
n
Sn +o(S5 ) (32)

where a2
=1/2 Õ [h/(1 Õ h)][(c Õ 1)2/4c], a3

=0, a4
=1/6.

The fact, that in expansion (32) we have a3
= 0, a4 > 0,

indicates that the system under consideration undergoes
a continuous transition from isotropic to ordered state.
This feature is inherent to the present model due to its

(a)

(b)
symmetry.

Figure 5. Nematic order parameters as a function of theCritical surface densities, h*, corresponding to a
surface density for hard ellipses (solid lines, replotted from

transition to an orientationall y ordered state can be calcu- [13]) and for hard rectangles (dashes, the present model )
lated from the condition a2

= 0, so that h* = 2c/(1 +c2 ). with the aspect ratios (a) c = 4, (b) c = 6. The circles are
MC simulation data for hard ellipses [3].For c = 2, 4 and 6, the values of h* are 0.8, 0.4706 and
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8212D hard rectangle � uids

isotropic–nematic transition is sensitive to the shape factor) through equation
and the aspect ratio of the particles. As shown in [13],

ZHCB = 1 +(1/2 )(1 +a/2)[(1 +h2/8) (1 Õ h) Õ 2 Õ 1]in the particular case of rectangles having continuous
orientations, a system undergoes a continuous transition (33)
if c > 5.44, while if 2.62 < c < 5.44 the nematic–isotropic
transition is � rst order. In the case of the ellipses with in the particular case of a disco-rectangle, its shape
c = 4, this fact is con� rmed in [3] by the existence of factor being calculated as a = [2(c Õ 1) +p]2 ¯
hysteresis and the jump in the S Õ h plot shown in [2p(c Õ 1 +p/4)] Õ 1.
� gure 5. As � gure 6 shows, equation (33) matches the ZHCB Õ h

The numerical results from studying of the equation data su� ciently well. Also we note that the smaller the
of state are summarized in � gure 6, where the ZHR Õ h value of c, the better is the conformity of the data.
plots are shown for systems of rectangles with several However, it should be mentioned that equation (33)
values of c. For the isotropic state, these results are derived in [24] is accurate only upto the second virial
compared with an equation of state for an ensemble of coe� cient. At the same time, the 3D version of the
disco-rectangles, ZHD, with the same values of c, taken present model, as is shown in [26], is identical with
as a maximum length to breadth ratio. Values of ZHD the approach based on the third order truncation of the
are calculated on the basis of the recent version of an Y -series given by Gelbart and Barboy [34].
equation of state which reproduces simulation data for The continuous transition to the orientationally
2D isotropic convex body � uids with a great variety of ordered state (� gure 6) starts at the surface density h*.
molecular shapes [24]. In accord with the cited model, For rectangles with continuous orientations, no ZHR Õ h
the compressibility factor, ZHCB, of such � uids is deter- data in the nematic state are available, but it is evident
mined by only one non-sphericity parameter a (the shape that for the present discrete orientation model, the

system is considerably more ordered than is the hard
ellipse � uid with a continuous range of allowed orien-
tations [12]; such a system has been studied within the
density-functional theory. This is not surprising since
most of the orientational disorder in the latter � uid is
due to small deviations from the preferred orientation
and such deviations are not permitted in the present
approach.

It should be remarked that the eŒect of discretization
in positions and/or orientations of molecules has been
recently discussed at length in Sear’s treatment of a 3D
� uid composed of hard rods or discs [35]. It has been
shown, that even for oŒ-lattice particles, restricting their
orientations changes their physical behaviour, at least
for highly anisometric particles. In particular, lattice
versions of oŒ-lattice systems are not suited for studying
translational ordering found in translationally ordered
liquid crystal phases. For the present model, further
work is necessary to examine peculiarities of the phase
behaviour of a 2D hard rectangle � uid as a means of
studying relevant 2D oŒ-lattice systems.

In conclusion of this section, we compare an equation
of state of a gas consisting of parallel squares with that

Figure 6. Compressibility factor for hard rectangles and for
obtained by Ree and Hoover [33]. Using (31) for the

hard disco-rectangles (with the aspect ratios 2, 4 and 6)
compressibility factor, ZHS, of such a � uid, one obtains:as a function of h. The dashed (short dashes) curves are

calculated from equation (32) of [24]. The solid curves
ZHS = (1 Õ h) Õ 2 = 1 +2h +3h2 +4h3 + ¼correspond to the stable nematic and isotropic phases;

the regions of unstable isotropic phases are indicated by
the dashed ( long dashes) lines (the present model ). The while in accordance with [35] it holds that
branching point on the isotherms is labelled with an
asterisk. To separate the curves, the Z scales have been ZHS = (1 +h Õ 1.5h2 )(1 Õ h) Õ 2 +ln (1 Õ h)
shifted from Z* (c = 2) as Z* +0.5 (c = 4) and Z* +2.0
(c = 6). = 1 +2h +3h2 +3.(6)h3 + ¼
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822 E. P. Sokolova and N. P. Tumanyan

One can see that the present approach provides the Here the tildes denote the set {N11 , N21 , … , N
nm

}
corresponding to the maximum term in (A1).factor ZHS which is accurate up to the third virial

coe� cient; the values of the fourth virial coe� cient diŒer Let us view this system on a square lattice of
M = A/Du sites. The accuracy of locating a mass centreby less than 10%.
of a particle equals Du, the size of a lattice cell. Then
integration over coordinates in Z

{Nl }
reduces to the5. Conclusion

summation over con� gurations of a 2D lattice gas, andOne of the objectives of this work is to show that
expression (A2) becomesa straightforward application of the Flory–Huggins

probability method need not lead to inconsistent thermo-
dynamics for a 2D ensemble of particles having the Z

{Nl }
= (Du)N/AnN a

l

N± l !B �
{UN}

gd ({N± l }; M )
form other than linear chains. The statistics of a multi-
component hard rectangle � uid proposed in this paper

Ö exp (Õ bU
N

) (A3)
is useful by itself, as well as being a meaningful con-
sideration in modelling of an adsorbed monolayer. Such where the summation is carried out over all values
a lattice model oŒers a plausible frame within which of the con� gurational energy with the most probable
attractive interactions may be included using the Bragg– orientational distribution {N± l }.
Williams or quasi-chemical approximations . As to the In a system of non-attracting hard particles, the term
continuum version of the lattice model, the generalized g

d
({N± l}; M) in (A3) equals the number of distinguish-

van der Waals approach which was elaborated for the able ways of arranging {N± l } particles on a lattice. Thus,
case of 3D nematic mixtures [36] would seem to treat (A3) reduces to the expression
angle dependent interparticle attractions in the most
explicit manner. Addition of other kinds of interactions

Z
{Nl }

= (Du)NAnN a
l

N
Þ

l !B Õ 1
gd({N

Þ

l}; M ). (A4)to hard body � uids under study will presumably result
in an approach useful for investigations of monolayers
and thin � lms on a molecular level.

From equation (A4), the con� gurational contribution
to the Helmholtz free energy for the system under

Appendix 1 consideration becomes
A. Consider a 2D oŒ-lattice m-component system

composed of {N
k
} = N1 , … , N

m
rectangles constrained Flatt

= Õ kT ln[g({Nl}; M ) ¯ (Du)N/nN] (A5)
on a surface area A at temperature T . Let each particle

where g ({Nl}; M ) = gd({Nl}; M )/ Pl Nl ! .be allowed to point in only n = 2 discrete orientations.
Equation (A5) is essentially equation (1).In the spirit of the treatment of a hard particle 3D � uid
B. The transition to the continuous translations ofelaborated by Zwanzig [36] and Cotter [37], the

the mass centres of particles can be performed by takingcon� gurational partition function of the system under
the limit (z = w/a, a is the unit length):consideration may be written as

F
conf

= lim
Du � 0

F
latt

= lim
z � 0

F
latt

. (A6)Z
{Nk}

= AnN/ am
k=1

N
k
!B �

N11

¼ �
Nnm

am
k=1

N
k
!

N
1k

! ¼ N
nk

!

Let us represent the terms N
0

and B
n

(n = 1, 2, 12) of
Ö P drN exp (Õ bU

N
) (A1) expression (9) in the form

where rN abbreviates the set of all positions, and U
N N

0
= A� fl NlBZ

0
/z2, N

0 +B
n

= A� fl NlBZ
n
/z2

is the potential energy of interaction of all particles.
The sums over all possible orientational distributions

(A7)
{N11 , N21 , … , N

nm
} are restricted by normalization

conditions S2a=1
Nak

= N
k
.

where fl = L lz2 is the dimensionless area covered by
The con� gurational partition function can be approxi-

an object l, Z0
= h Õ 1 Õ 1, Z

i
= Z0

= zb
i

(i = 1, 2),
mated by the largest term in the sum. Using the notations Z

12
= Z

0 +z (b
1 +b

2
) Õ z2Z± l (hl / fl h), b

i
= Sl hl /h f (i)l .

of § 2, expression (A1) can be rewritten as Here f (i)l = r(i)l z is the dimensionless edge of an object l
along the direction i, hl = L lNl /M = fl Nl /AÄ , (AÄ = A/a2 )

Z
{Nl }

= AnN/ a
l

N± l !B P drN exp[ Õ bU
N

(rN ; {N± l })]. is the fraction of the total surface covered with objects l.
Combining expression (12) and notations (A7),

together with the Stirling formula one can rewrite(A2)
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8232D hard rectangle � uids

equation (A6) as follows: to arrange N12 rods in direction 1 and N22 rods in
direction 2 is given by expression (14). The number of
ways of then placing the N

1
squares isbF

conf
= Õ lim

z � 0 G� l flNl C�
n

h
n
(Z

n
ln Z

n
Õ Z

n
)/z2DH

h
RS

= (N
1
!) Õ 1 a

N1 Õ 1

m=0

nY

S
(m +1, {Na2

}) (A11)+ �
l

Nl ( ln 2Nl Õ 1) Õ �
l

Nl ln �
l

ulNl

(A8) where nY

S
(m +1, {Na2

}) is the number of cells available
to the (m +1)th square given that N2 rods and m squareswhere h1

= h2
= Õ h0

= Õ h12
= 1; ul = fl a2 is the surface

are introduced.area of an object l.
By using expressions (8–11) one gets:Finally, using the L’Hospital rule for the evaluation

of the factor S
n

h
n
(Z

n
ln Z

n
Õ Z

n
) in expression (A8), one

gets an expression identical with (28): nY

S
=

(XY

0 )r2 (XY

0 +2rm +rN2
Õ m)(r Õ 1)

2

a2
a=1

(XY

0 +rm +Na2
+rNb2

)r(r Õ 1)
(b Þ a)

bFconf
= �

l

Nl A Õ 1 + flb1b2
h

1 Õ h
+ln

h

1 Õ h
+ln

n ¾l
h B

(A12)

where n ¾l = Nl /A.
where XY

0
= M Õ r2m Õ rN2 is the number of vacant cells.

Upon inserting (A12) and applying standard methods,Appendix 2
the product (A11) becomes:Here we verify the Maxwell relations (3) for both

the counting procedures for the numbers nl discussed
in § 2. In the mean � eld approximations , after sub- hRS

=
M!

N0 !N1 !

(M Õ rN
2
)!

[M Õ (r Õ 1)2N1]!stitution of relations (7), (8) and (9) in expression (2)
and diŒerentiation, one obtains

Ö

a
a

[M Õ r(r Õ 1)N1
Õ (r Õ 1)Na2

]!

a
a

[M Õ (r Õ 1)Na2
]!

. (A13)q ln nl

qXd

= Õ
L lL d

X0
+ �

2

i=1

(r(i)l Õ 1)(L d Õ r(j)d )
X0 +B

i
Multiplying g

R
from expression (14) with h

RS
from (A13)

one gets:
+

a2
i=1

(r(i)l
Õ 1)(r(i)d

Õ 1)

X0 +B12
. (A9)

After permutation of subscripts l and d one can see that g
R

¯ h
RS

=

a
a

[M Õ r(r Õ 1)N1
Õ (r Õ 1)Na2

]!

N
0
!N

1
!N

12
!N

22
![M Õ (r Õ 1)2N

1
]!in this case the relations (3) are not satis� ed. However,

using expression (10) derived within the proposed = g(N1 , {Na2
}; M ). (A14)

version of the Flory–Huggins procedure one gets:

Expression (A14) is identical with formula (13).
Further, we calculate the combinatorial factor by

q ln n*l
qX0

= Õ
L l L d

X0
+ �

2

i=1

(L l Õ r(j)l ) (L d Õ r(j)d )
X0 +B

i introducing N1 squares initially before N12 and N22 rods
are placed.

The total number of ways to place N1 squares on to
Õ

a2
i=1

(r(i)l
Õ 1)(r(i)d

Õ 1)

X0 +B12
. (A10) an empty lattice is given by expression (15). The number

of ways of then placing the N12 rods in direction 1 is:

The derivative (A10) is now symmetric with respect to hSR1
= (N12!) Õ 1 a

N12 Õ 1

m=0

nY

R1
(N1 , m +1, N

22
= 0)

change of l and d.

(A15)
Appendix 3

In the context of the problem discussed in [19, 23], where nY

R1
(N1 , m +1, N

22
= 0) is the number of cells

we show here that expression (13) is independent of available to the (m +1)th rod in direction 1, given that
the manner of placing the squares and rods onto the N1 squares and m rods are introduced.
square lattice. Upon applying equations (8) and (9) to rods having

First, we determine the combinatorial factor by r Ö 1 segments, one obtains:
placing all N2

= N12 +N22 rods initially before all N1
square plates are placed. The total number of ways nY

R1
= (XYY

0
)r/(XYY

0 +rN
1 +m)r Õ 1 (A16)
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